Abstract

Little is known about the subcellular distribution and the dynamics of tubulins in adult cardiac myocytes although both are modified during cardiac hypertrophy and heart failure. Using confocal microscopy, we examined post-translational modifications of tubulin in fully differentiated ventricular myocytes isolated from adult rat hearts, as well as in immortalized and dividing HL-1 cardiomyocytes. Detyrosinated Glu-alpha-tubulin was the most abundant post-translationally modified tubulin found in ventricular myocytes, while acetylated- and delta2-alpha-tubulins were found in lower amounts or absent. In contrast, dividing HL-1 cardiomyocytes exhibited high levels of tyrosinated or acetylated alpha-tubulins. A mild nocodazole treatment (0.1 microM, 1 h) disrupted microtubules in HL-1 myocytes, but not in adult ventricular myocytes. A stronger treatment (10 microM, 2 h) was required to disassemble tubulins in adult myocytes. Glu-alpha-tubulin containing microtubules were more resistant to nocodazole treatment in HL-1 cardiomyocytes than in ventricular myocytes. Endogenous activation of the cAMP pathway with the forskolin analog L858051 (20 microM) or the beta-adrenergic agonist isoprenaline (10 microM) disrupted the most labile microtubules in HL-1 cardiomyocytes. In contrast, isoprenaline (10 microM), cholera toxin (200 ng/ml, a G(S)-protein activator), L858051 (20 microM) or forskolin (10 microM) had no effect on the microtubule network in ventricular myocytes. In addition, intracellular Ca2+ accumulation induced either by thapsigargin (2 microM) or caffeine (10 mM) did not modify microtubule stability in ventricular myocytes. Our data demonstrate the unique stability of the microtubule network in adult cardiac myocytes. We speculate that microtubule stability is required to support cellular integrity during cardiac contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.