Abstract

Autophagy is a conserved intracellular degradation pathway essential for protein homeostasis, survival and development. Defects in autophagic pathways have been connected to a variety of human diseases, including cancer and neurodegeneration. In the process of macroautophagy, cytoplasmic cargo is enclosed in a double-membrane structure and fused to the lysosome to allow for digestion and recycling of material. Autophagosome formation is primed by the ULK complex, which enables the downstream production of PI(3)P, a key lipid signalling molecule, on the phagophore membrane. The PI(3)P is generated by the PI3 kinase (PI3K) complex, consisting of the core components VPS34, VPS15 and Beclin 1. Beclin 1 is a central player in autophagy and constitutes a molecular platform for the regulation of autophagosome formation and maturation. Post-translational modifications of Beclin 1 affect its stability, interactions and ability to regulate PI3K activity, providing the cell with a plethora of strategies to fine-tune the levels of autophagy. Being such an important regulator, Beclin 1 is a potential target for therapeutic intervention and interfering with the post-translational regulation of Beclin 1 could be one way of manipulating the levels of autophagy. In this review, we provide an overview of the known post-translational modifications of Beclin 1 that govern its role in autophagy and how these modifications are maintained by input from several upstream signalling pathways. ▓.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call