Abstract

The halophilic archaeon Haloferax volcanii is surrounded by a protein shell solely comprised of the S-layer glycoprotein. While the gene sequence and glycosylation pattern of the protein and indeed the three-dimensional structure of the surface layer formed by the protein have been described, little is known of the biosynthesis of the S-layer glycoprotein. In the following, pulse-chase radiolabeling and cell-fractionation studies were employed to reveal that newly synthesized S-layer glycoprotein undergoes a maturation step following translocation of the protein across the plasma membrane. The processing step, detected as an increase in the apparent molecular mass of the S-layer glycoprotein, is unaffected by inhibition of protein synthesis and is apparently unrelated to glycosylation of the protein. Maturation requires the presence of magnesium ions, involved in membrane association of the S-layer glycoprotein, and results in increased hydrophobicity of the protein as revealed by enhanced detergent binding. Thus, along with protein glycosylation, additional post-translational modifications apparently occur on the external face of the haloarchaeal plasma membrane, the proposed topological homologue of the lumenal face of the eukaryal endoplasmic reticulum membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.