Abstract

Cyanobacteria are prolific producers of bioactive natural products that mostly belong to the nonribosomal peptide and polyketide classes. We show here how a linear precursor peptide of microviridin K, a new member of the microviridin class of peptidase inhibitors, is processed to become the mature tricyclic peptidase inhibitor. The microviridin (mvd) biosynthetic gene cluster of P. agardhii comprises six genes encoding microviridin K, an apparently unexpressed second microviridin, two RimK homologues, an acetyltransferase, and an ABC transporter. We have over-expressed three enzymes of this pathway and have demonstrated their biochemical function in vitro through chemical degradation and mass spectrometry. We show that a prepeptide undergoes post-translational modification through cross-linking by ester and amide bond formation by the RimK homologues MvdD and MvdC, respectively. In silico analysis of the mvd gene cluster suggests the potential for widespread occurrence of microviridin-like compounds in a broad range of bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.