Abstract

The interactions between β-thalassemia and the humen hemoglobin (Hb) α-chain variants, Hb Hasharon, Hb O Indonesia and Hb J Paris, and between α-thalassemia and the β-chain variants, Hb S, Hb C and Hb G San José, which are characterized by preferential decrease of the abnormal Hb level in peripheral blood, have been studied. Both biosynthesis studies in reticulocytes and determination of the relative affinity of abnormal chains for normal complementary chains by in vivo recombination experiments, involving globin chains previously isolated in their native form, have been carried out in order to provide insights on the molecular events following the synthesis of the mutant chains under conditions of complementary chain deficiency. Furthermore, we have measured the relative affinity for complementary chain of β D Los Angeles - and α J Rovigo - chains , the level of which does not decay in thalassemic carriers, and of α Legnano - and β Osu Christiansborg - chains , which have not yet been observed in association with thalassemias. Our experiments indicated that the differential affinity for β-chains is not always the major post-translational control mechanism which regulates the level of certain α-chain variants in β-thalassemic heterozygotes, and that preferential removal of abnormal chains by proteolytic enzymes is likely to play an important role in most cases. On the other hand, the low affinity of certain variant β-chains for α-chains may offer an explanation for the low level of certain β-chain variants in peripheral blood of non-thalassemic carriers, as well as to their decrease under conditions of relative α-chain deficiency (α-thalassemias).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call