Abstract

Direct numerical simulation of incompressible turbulence in a straight square duct finds the post-transition flow evolving substantially, and for Reynolds numbers based on the friction velocity and duct hydraulic radius greater than 600 a two-structure secondary flow regime has been established, suggesting the coexistence of two distinct sources of mean streamwise vorticity. The nominal source terms in the equation for the mean streamwise vorticity involve turbulent variables only, that allow us to identify the dominant dynamical process that marks and/or sustains the transverse mean flow. Close to the corner a mean profile instability is dominant, while farther away turbulent streamwise vorticity intensification is broadly distributed near the duct walls. The instability-driven secondary velocity maximum on the duct diagonals scales with the friction velocity. There is limited scaling of turbulent intensities on the wall bisectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.