Abstract

The methanol-derived methanogenetic pathway contributes to bulk methane production in cold regions, but the cold adaptation mechanisms are obscure. This work investigated the mechanisms using a psychrophilic methylotrophic methanogen Methanolobus psychrophilus R15. R15 possesses two mtaCB operon paralogues-encoding methanol:corrinoid methyltransferase that is key to methanol-based methanogenesis. Molecular combined methanogenic assays determined that MtaC1 is important in methanogenesis at the optimal temperature of 18°C, but MtaC2 can be a cold-adaptive paralogue by highly upregulated at 8°C. The 5'P-seq and 5'RACE all assayed that processing occurred at the 5' untranslated region (5'-UTR) of mtaC2; reporter genes detected higher protein expression, and RNA half-life experiments assayed prolonged lifespan of the processed transcript. Therefore, mtaC2 5'-UTR processing to move the bulged structure elevated both the translation efficiency and transcript stability. 5'P-seq, quantitative RT-PCR and northern blot all identified enhanced mtaC2 5'-UTR processing at 8°C, which could contribute to the upregulation of mtaC2 at cold. The R15 cell extract contains an endoribonuclease cleaving an identified 10nt-processing motif and the native mtaC2 5'-UTR particularly folded at 8°C. Therefore, this study revealed a 5'-UTR processing mediated post-transcriptional regulation mechanism controlling the cold-adaptive methanol-supported methanogenetic pathway, which may be used by other methylotrophic methanogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.