Abstract

The MiniChromosome Maintenance 2-7 (MCM2-7) complex provides essential replicative helicase function. Insufficient MCMs impair the cell cycle and cause genomic instability (GIN), leading to cancer and developmental defects in mice. Remarkably, depletion or mutation of one Mcm can decrease all Mcm levels. Here, we use mice and cells bearing a GIN-causing hypomophic allele of Mcm4 (Chaos3), in conjunction with disruption alleles of other Mcms, to reveal two new mechanisms that regulate MCM protein levels and pre-RC formation. First, the Mcm4Chaos3 allele, which disrupts MCM4:MCM6 interaction, triggers a Dicer1 and Drosha-dependent ∼40% reduction in Mcm2–7 mRNAs. The decreases in Mcm mRNAs coincide with up-regulation of the miR-34 family of microRNAs, which is known to be Trp53-regulated and target Mcms. Second, MCM3 acts as a negative regulator of the MCM2–7 helicase in vivo by complexing with MCM5 in a manner dependent upon a nuclear-export signal-like domain, blocking the recruitment of MCMs onto chromatin. Therefore, the stoichiometry of MCM components and their localization is controlled post-transcriptionally at both the mRNA and protein levels. Alterations to these pathways cause significant defects in cell growth reflected by disease phenotypes in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.