Abstract

The main goal of this work was to develop, optimize and validate a multi-residue method for the simultaneous determination of 97 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphorus flame retardants, and several types of pesticides in marine sediment samples. Extraction and cleanup were integrated into the same step using pressurized liquid extraction (PLE) with in-cell clean-up (1 g of alumina). The extraction was performed using dichloromethane at 100 °C, 1500 psi and 3 extraction cycles (5 min per cycle). Extracts were derivatized with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) to improve the signal and sensitivity of some target compounds (i.e., triclosan, 2-hydroxybenzophenone). Separation, identification and quantification of analytes were carried out by gas chromatography (GC) coupled to tandem mass spectrometry. Under optimal conditions, the optimized protocol showed good recovery percentages (70–100%), linearity (>0.99) and limits of detection below 1 ng g−1 for all compounds. Finally, the method was applied to the analysis of sediment samples from different coastal areas from Andalusia (Spain), where occurrence and distribution of emerging contaminants in sediments is very scarce. Twenty five compounds out of 98 were detected in all samples, with the endocrine disruptor nonylphenol and the fragrance galaxolide showing the highest concentrations, up to 377.6 ng g−1 and 237.4 ng g−1, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.