Abstract

Thermalization in open systems coupled to macroscopic environments is usually analyzed from the perspective of relaxation of the reduced state of the system to the equilibrium state. Less emphasis is given to the change of the state of the bath. However, as previously shown for some specific models, during the thermalization the environment may undergo a nontrivial dynamics, indicated by the the change of its von Neumann entropy, at timescales even longer than the relaxation time of the system; here such a behavior is called post-thermalization. We provide a more detailed analysis of this phenomenon by simulating the full dynamics of a variety of systems together with their environment. In particular, the post-thermalization is qualitatively explained as a result of reconversion of the initially built up correlation between the system and the bath into the correlation between the degrees of freedom in the environment. We also present exemplary systems in which such a reconversion is suppressed due to non-Markovian dynamics or the presence of interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call