Abstract
Conservation efforts to secure the long-term survival of crocodilian species would benefit from the establishment of a frozen sperm bank in concert with artificial breeding technologies to maintain genetic diversity among captive assurance populations. Working towards this goal, our research has focused on the saltwater crocodile Crocodylus porosus as a tractable model for understanding crocodilian sperm physiology. In extending our systematic characterisation of saltwater crocodile spermatozoa, in this study we examined the development of motility during sperm transport through the excurrent duct system of the male crocodile. The results show that approximately 20% of crocodile testicular spermatozoa are immediately motile but experience a gradient of increasing motility (percentage motile and rate of movement) as they transit the male reproductive tract (epididymis). Moreover, we confirmed that, as in ejaculated crocodile spermatozoa, increased intracellular cAMP levels promoted a significant and sustained enhancement of sperm motility regardless of whether the cells were isolated from the testis or epididymis. Along with the development of artificial reproductive technologies, this research paves the way for the opportunistic recovery, storage and potential utilisation of post-mortem spermatozoa from genetically valuable animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.