Abstract

CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system.A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.