Abstract

A new vibration control system including viscoelastic or viscoplastic rubber dampers is proposed for residential houses. This system consists of braces and a damper unit including a high-hardness rubber damper or a linear rubber damper. The high-hardness rubber damper possesses many unprecedented properties such as large stiffness, small temperature and frequency dependencies compared to most of usual viscoelastic dampers. Post tensioning forces are introduced into the braces to reduce small gap in joint parts and this system has high damping performance for micro-vibration. The control system can absorb sufficient energy through the high-rubber damper and post tensioning braces. A concept is introduced called an effective deformation ratio, i.e. the ratio of the actual damper deformation to the interstory drift of the frame, as a criterion to measure the damping performance and effectiveness of this system. To find out principal parameters that affect greatly the effective deformation ratio of the proposed new vibration control system, an incremental analysis method taking into account the geometrical and material nonlinearities is developed to simulate the main characteristics of this vibration control system. The accuracy of the analysis method is investigated through the comparison with the results by two simple analysis methods. The comparison with the experimental result is also conducted for further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.