Abstract

In this work, we demonstrate that strain-promoted azide-alkyne cycloaddition (SPAAC) yields virtually complete conversion in the context of the post-synthetic modification (PSM) of metal-organic frameworks (MOFs). We use surface-anchored MOF (SURMOF) thin films, [Zn2(N3-bdc)2(dabco)], grown on modified Au substrates using liquid-phase epitaxy (LPE) as a model system to first show that, with standard click chemistry, presently, the most popular method for rendering additional functionality to MOFs via PSM, quantitative conversion yields, cannot be reached. In addition, it is virtually impossible to avoid contaminations of the product by the cytotoxic Cu(I) ions used as a catalyst, a substantial problem for applications in life sciences. Both problems could be overcome by SPAAC, where a metal catalyst is not needed. After optimization of reaction conditions, conversion yields of nearly 100% could be achieved. The consequences of these results for various applications of PSM-modified SURMOFs in the fields of membranes, optical coatings, catalysis, selective gas separation, and chemical sensing are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.