Abstract

National forest inventories report estimates of parameters related to forest area and growing stock volume for geographic areas ranging in size from municipalities to entire countries. Landsat imagery has been shown to be a source of auxiliary information that can be used with stratified estimation to increase the precision of estimates, although the increase is greater for estimates of forest area than for estimates of growing stock volume. The objective of the study was to assess the utility of lidar-based stratifications for increasing the precision of mean proportion forest area and mean growing stock volume per unit area. Stratifications based on nonlinear logistic regression model predictions of volume obtained from lidar data reduced variances of mean growing stock volume estimates by factors as great as 3.2 and variances of mean proportion forest area estimates by factors as great as 1.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.