Abstract

Coastal dunes are often the first and primary form of defense against destructive surge and waves that accompany extreme storm events. Beach grasses are known to affect dune height, width, and stability, contributing to the dune’s ability to protect the hinterland from wave and flooding hazards (Hacker et al. 2012). However, the interaction and feedbacks between dune development and properties of beach grasses (e.g., species, density) is not fully understood. In particular, our knowledge of the ecomorphodynamic processes controlling the recovery of coastal dunes following storms and the long-term ability of dunes to adapt to changes in climate remains inadequate. The objective of this interdisciplinary research is to characterize the temporal and spatial variability of coastal foredune recovery following major storm events and the subsequent impact of this recovery on future vulnerability. The study region consists of three low-lying barrier islands within the Cape Lookout National Seashore (CALO) along the central coast of North Carolina. The 90 km stretch of coast exhibits spatial variability in dominant dune grass species, grass cover density, coast orientation, beach slope, and wave energy. Using physical and ecological field datasets and process-based numerical modeling, post-storm dune recovery is assessed following Hurricane Matthew (2016).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.