Abstract

Crustal accretion at divergent plate boundaries typically occurs via the periodic intrusion of dikes, but their emplacement and the associated deformation are rarely observed. The few existing observations at subaerial rifts show that these diking events are followed by a decadal‐scale period with extension rates faster than the secular divergent plate motion. This transient accelerated deformation has been explained by continued subsurface magma injection or by relaxation, in the viscoelastic mantle, of the stress changes imparted by dike opening. For the first time, GPS measurements were collected within a few months of a rifting event at a major plate boundary, the September 2005, 60 km‐long dike intrusion in the Dabbahu segment, Afar, Ethiopia. Extension rates for the first 3 years greatly exceed the plate motion (Nubia‐Arabia) secular divergence rate, even at sites located more than 60 km from the rift axis. Here we show that these observations are consistent with stress relaxation in a viscoelastic upper mantle with a viscosity of about 5 × 1018 Pa·s overlain by a 12–14 km‐thick elastic crust. The alternative model of continued diking requires continuous opening well below the Moho and is therefore unlikely. Instead, magma injection in Afar since June 2006 has taken the form of smaller discrete diking events, tapping into a mid‐crustal melt reservoir under the segment center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.