Abstract

Post-rift magmatism along continental margins is usually focused on highly stretched basins or aborted rifts. Adjacent microplates with relatively thick lithosphere are not expected to exhibit intense post-rift magmatism. This study identifies 20 mounded structures and associated pathways using two-dimensional, multichannel seismic data and ocean bottom seismometer (OBS) data across the southeastern Xisha Massif of the northwestern South China Sea. This massif is a relatively thick (>20 km) region of crust that forms a microplate between two rift branches. The mounded structures are interpreted as volcanoes, based on their seismic reflections and morphological characteristics. Detachment faults that extend into the middle crust captured the magma and provided pathways for vertical migration. During the rise of magma into the sedimentary stratum, detachment faults still served as the main channels of magmatic migration. The rigidity differences between the basement and the overlying sediments, as well as the stress field, facilitated subordinate pathways for magmatic migration, particularly at the depocenters and flanks of half-grabens. Consequently, larger volcanoes are present above the basement highs, while smaller volcanoes are located in the centers of half-grabens. This study provides criteria for identifying submarine mounded structures of different origins that are applicable beyond the study area. Moreover, this study highlights that detachment faults play a key role in the volcanic systems of the relatively rigid microplates of heterogeneous crustal structure. It also promotes our understanding of post-rift magmatism and the dynamic evolution of continental margins, and the results could be applicable to other areas with similar geological settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call