Abstract
Overhung rotors usually exhibit recurrent transitions through critical whirl rotational speeds during startup and coast down operations, which significantly differ from their steady-state whirl responses. The presence of angular acceleration results in a linear-time-varying (LTV) system, which, although technically linear, still presents complexities often evinced by a nonlinear system. In general, backward whirl zones can either precede the critical forward whirl speed (termed as pre-resonance backward whirl, Pr-BW), or immediately follow the critical forward whirl speed (termed as post-resonance backward whirl, Po-BW). The Po-BW in the whirl response of a cracked overhung rotor with a breathing crack is studied here as distinct from that of geometrically symmetric configurations of other rotor systems. The equations of motion from the finite element (FE) model of an overhung rotor system with a breathing crack are numerically integrated to obtain the whirl response. The transient whirl responses with different bearing conditions are thoroughly investigated for excitation of Po-BW. The Po-BW zones of rotational speeds are determined via the wavelet transform method and full spectrum analysis (FSA) and applied to signals with added noise. The results of this work confirm the excitation of the Po-BW in cracked overhung rotors and confirm the robustness of the employed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.