Abstract
The basis for the hypersensitive response of glycogen phosphorylase to epinephrine stimulation was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. To assess potential G-protein involvement in the response, normal and diabetic derived myocytes were incubated with either cholera or pertussis toxin prior to hormonal stimulation. Pretreatment of cardiomyocytes with cholera toxin resulted in a potentiated response to epinephrine stimulation whereas pertussis toxin did not affect the activation of this signaling pathway. To determine if the enhanced response of phosphorylase activation resulted from an alteration in adenylate cyclase activation, the cells were challenged with forskolin. After 3 hr in primary culture, diabetic cardiomyocytes exhibited a hypersensitive response to forskolin stimulation relative to normal cells. However, after 24 hr in culture, both normal and diabetic myocytes responded identically to forskolin challenge. The present data suggest that a cholera toxin sensitive G-protein mediates the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in diabetic cardiomyocytes and this response which is present in alloxan-diabetic cells and is induced in vitro in normal cardiomyocytes is primarily due to a defect at a post-receptor site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.