Abstract

AbstractFlash flooding is a significant societal problem, but related precipitation forecasts are often poor. To address, one can try to use output from convection‐parametrising (global) ensembles, post‐processed to forecast at point‐scale, or convection‐resolving limited area ensembles. The new methodology described here combines both. We apply “ecPoint‐rainfall” post‐processing to the ECMWF global ensemble. Alongside we use 2.2 km COSMO LAM ensemble output (centred on Italy), and also post‐process that, using a scale‐selective neighbourhood approach to compensate for insufficient members and to preserve consistently forecast local details. The two resulting scale‐compatible components then undergo lead‐time‐weighted blending, to create the final probabilistic 6 h rainfall forecasts. Product creation for forecasters, in this way, constituted the “Italy Flash Flood use case” within the EU‐funded MISTRAL project; real‐time delivery of open access products is ongoing. One year of verification shows that, of the five components (2 raw, 2 post‐processed and blended), ecPoint is the most skilful. The post‐processed COSMO ensemble adds most value to summer convective events in the evening, when the global model has an underprediction bias. In two typical heavy rainfall case studies we observed underestimation of the largest point totals in the raw ECMWF ensemble, and overestimation in the raw COSMO ensemble. However, ecPoint elevated the ECMWF maxima and highlighted best the most affected areas and merged products seemed to be the most skilful of all. Even though our LAM post‐processing does not include (or arguably need) bias‐correction, this study still provides a unique blueprint for successfully combining ensemble rainfall forecasts from global and LAM systems around the world. It also has important implications for forecast products as global ensembles move ever closer to having convection‐permitting resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.