Abstract

The performance of a continuous-variable quantum key distribution (CVQKD) protocol depends on the efficiency of the post-processing of measurement results. The post-processing methods extract statistical information from the raw data, establish the mutual knowledge between the parties, and produce a final key that provides absolute security. The post-processing phase is a bottleneck in CVQKD with crucial importance to the efficiency and protocol attributes. Post-processing uses the raw data of the parties generated by the quantum-level transmission and a classical authenticated channel to generate a secret key between the parties. The current reconciliation procedures require high-complexity coding with moderate resulting efficiency. Here we define an optimization method for post-processing in continuous-variable quantum key distribution. The reconciliation method achieves additive Gaussian noise on the random secret for arbitrarily low dimensional blocks. The model consumes all information from the raw data blocks to provide maximal efficiency and security via standard operations. The results can be realized by generic Gaussian coding schemes, allowing an easily implementation for experimental CVQKD protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.