Abstract

To resolve the controversy of whether or not the origin of an electronic gap in antiferromagnetic post-perovskite (pPv) CaIrO3 is due to Coulomb repulsion or spin-orbit coupling, and/or both, we have performed comprehensive full potential density functional theory based calculations. A rather consistent electronic structure, which explains the origin and magnitude of the electronic gap, inter-band d-d transition energies, high thermopower and large magneto-crystalline anisotropy, is obtained with the use of a modified Becke-Johnson (mBJ) exchange potential. Fundamentally, mBJ calculations correctly capture the strong interplay of the crystal field and long range antiferromagnetic ordering of Ir spins as the mechanism that drives pPv-CaIrO3 to an insulating state. Based on our findings, we propose that pPv-CaIrO3 is a conventional Slater type antiferromagnetic insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.