Abstract

Garnet–orthopyroxene granulites from the Rauer Islands (East Antarctica) provide a spectacular example to investigate the late fluid evolution, metamorphic duration, and behavior of monazite and zircon in response to metamorphic reactions and fluid–rock interaction. Here, we characterize the secondary fluid inclusions in peritectic garnet and orthopyroxene, which occur as multiphase inclusions along micro–fractures. Inclusions are composed of siderite, pyrophyllite, calcite, quartz and residual CO2, representing stepdaughter phases resulting from the interactions between C–O–H fluid and its hosts at variable temperatures during retrogression. Zircon grains show clear core–rim structure, which yield 206Pb/238U ages of 540–507 Ma and 527–490 Ma, respectively. Index inclusions and internal structures suggest that the cores document the timing of peak and post–peak decompression while the growth of rims corresponds to melt crystallization during the final cooling. The UPb systems in zircons are considered to have not been obviously affected by fluid or melt–mediated modification. The unusual formation of monazites in garnet–orthopyroxene granulites may be linked with the elevated phosphorus budget as a result of apatite dissolution during the prograde melting of the rocks. Detailed investigations suggest that the crystallization of monazites occurred both at peak and post–decompression stages, whose isotopic systematics has been completely reset due to melt–mediated dissolution–precipitation. The spurious dates for monazites (522–495 Ma) are highly coinstantaneous with the dating results for zircon rims, further supporting this view. Therefore, we conclude that the late carbonic fluid influx cannot result in marked U(Th)–Pb resetting in zircon and monazite. Instead, anatectic melt may have played an important role in the disturbance of isotopic systematics in monazites, especially for long–lived high–grade metamorphic terranes. Combined with previously published data, we propose that the Pan–African metamorphic event in the Rauer Islands may have reached the peak at around ∼540 Ma, followed by a protracted post–peak evolution that lasted for at least ∼50 Myr. This study highlights the importance of an integrated investigation of fluid and index mineral inclusions, as well as the chemical signatures of zircon and monazite, to interpret chronological data correctly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.