Abstract

Rational regulation of electronic structures and functionalities of framework materials still remains challenging. Herein, reaction of 4,4',4''-nitrilo-tribenzhydrazide with tris(μ2 -4-carboxaldehyde-pyrazolato-N,N')-tricopper (Cu3 Py3 ) generates the crystalline copper organic framework USTB-11(Cu). Post-modification with divalent nickel ions affords the heterometallic framework USTB-11(Cu,Ni). Powder X-ray diffraction and theoretical simulations reveal their two-dimensional hexagonal structure geometry. A series of advanced spectroscopic techniques disclose the mixed CuI /CuII state nature of Cu3 Py3 in USTB-11(Cu,Ni) with a uniform bistable Cu3 4+ (CuI 2 CuII ) : Cu3 5+ (CuI CuII 2 ) (ca. 1 : 3) oxidation state, resulting in a significantly improved formation efficiency of the charge-separation state. This endows the Ni sites with enhanced activity and USTB-11(Cu,Ni) with outstanding photocatalytic CO2 to CO performance with a conversion rate of 22 130 μmol g-1 h-1 and selectivity of 98 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.