Abstract

We use a post-Newtonian diagnostic tool to examine numerically generated quasiequilibrium initial data sets for nonspinning double neutron star and neutron star-black hole binary systems. The post-Newtonian equations include the effects of tidal interactions, parametrized by the compactness of the neutron stars and by suitable values of 'apsidal' constants, which measure the degree of distortion of stars subjected to tidal forces. We find that the post-Newtonian diagnostic agrees well with the double neutron star initial data, typically to better than half a percent except where tidal distortions are becoming extreme. We show that the differences could be interpreted as representing small residual eccentricity in the initial orbits. In comparing the diagnostic with preliminary numerical data on neutron star-black hole binaries, we find less agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call