Abstract

This work devises a formalism to obtain the equations of motion for a black hole-fluid configuration. Our approach is based on a Post-Newtonian expansion and adapted to scenarios where obtaining the relevant dynamics requires long time-scale evolutions. These systems are typically studied with Newtonian approaches, which have the advantage that larger time-steps can be employed than in full general-relativistic simulations, but have the downside that important physical effects are not accounted for. The formalism presented here provides a relatively straightforward way to incorporate those effects in existing implementations, up to 2.5PN order, with lower computational costs than fully relativistic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call