Abstract

The persistence of SARS-CoV-2 after death of infected individuals is unclear. The aim of this study was to investigate the presence of SARS-CoV-2 RNA in different organs in correlation with tissue damage and post-mortem viral dynamics in COVID-19 deceased. Twenty-eight patients (17 males, 11 females; age 66–96 years; mean 82.9, median 82.5 years) diagnosed with COVID-19 were studied. Swabs were taken post-mortem during autopsy (N = 19) from the throat, both lungs, intestine, gallbladder, and brain or without autopsy (N = 9) only from the throat. Selective amplification of target nucleic acid from the samples was achieved by using primers for ORF1a/b non-structural region and the structural protein envelope E-gene of the virus. The results of 125 post-mortem and 47 ante-mortem swabs were presented as cycle threshold (Ct) values and categorized as strong, moderate, and weak. Viral RNA was detected more frequently in the lungs and throat than in the intestine. Blood, bile, and the brain were negative. Consecutive throat swabs were positive up to 128 h after death without significant increase of Ct values. All lungs showed diffuse alveolar damage, thrombosis, and infarction and less frequently bronchopneumonia irrespective of Ct values. In 30% the intestine revealed focal ischemic changes. Nucleocapsid protein of SARS-CoV-2 was detected by immunohistochemistry in bronchial and intestinal epithelium, bronchial glands, and pneumocytes. In conclusion, viral RNA is still present several days after death, most frequently in the respiratory tract and associated with severe and fatal organ damage. Potential infectivity cannot be ruled out post-mortem.

Highlights

  • The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has become a pandemic and shaken economy, societies, and national healthcare systems worldwide [1]

  • We further demonstrate that the throat and lungs are most frequently affected irrespective of the positivity of the pharyngeal swab and show only slight differences of the average cycle threshold (Ct) values

  • This is in contrast to a recent autopsy study which reported clearly higher viral load in the lungs compared with the pharynx by using a different sampling method [17]

Read more

Summary

Introduction

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has become a pandemic and shaken economy, societies, and national healthcare systems worldwide [1]. SARSCoV-2 has been categorized into the ACDP hazard group 3, which means that (1) the hazard may lead to severe human disease and can be a significant risk to laboratory employees, (2) the virus can be transmitted to other people, and (3) prophylaxis and/or treatment are generally accessible [2]. The risk of transmission depends on several factors such as the type and duration of exposure, the use of preventive measures, and individual factors (e.g., the amount of virus in respiratory secretions) [4]. Virus-contaminated surfaces can be a potential source of infection including transmission of the virus to the mucous membranes of the individual, in particular the Virchows Arch (2021) 478:343–353 nose, eyes, and mouth [4, 5]. In addition to the respiratory tract, the gastrointestinal tract has received increasing attention as site of viral replication and shedding via feces [10, 11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call