Abstract

The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.