Abstract

Preparation, characterization, and catalytic properties of bimetallic coordination polymer constructed from 2‐aminoterephthalic acid as linker, zinc cations as node, and cis‐dioxo molybdenum units as catalytic active sites are reported via two pathways. Molybdenum centers were placed in N,O positions created by condensation reaction of 2‐aminoterephthalic acid with salicylaldehyde while zinc cations coordinated via carboxylic acid groups of linker to achieve infinite chains of metalo‐ligand. The obtained coordination polymer was fully characterized and its catalytic properties in the epoxidation of olefins with tert‐butyl hydroperoxide (TBHP) described. In comparison with previously reported heterogenized molybdenum catalysts, this new coordination polymer exhibited good conversion as well as high selectivity in the epoxidation of olefins. The catalyst is stable under ambient conditions and could be reused as active catalyst for at least five times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call