Abstract
Utilizing metal-organic frameworks (MOFs) to design photocatalysts for CO2 reduction catalysts is an excellent idea but currently restricted by the relatively low activity. Enhancing CO2 affinity and tuning the oxidation state of metal clusters in MOFs might be a solution to improve the catalytic performance. Herein, the Cl-bridge atoms in the metal clusters of a cobalt MOF were easily exchanged with OH−, which simultaneously oxidized a portion of Co(II) to Co(III) and resulted in a much enhanced photocatalytic activity for CO2 reduction. In contrast, the original framework does not exhibit such superior activity. Comprehensive characterizations on their physicochemical properties revealed that the introduction of hydroxyl group not only greatly increases the CO2 affinity but also alters the oxidation state of metal clusters, resulting in significantly improved photocatalytic activities for CO2 reduction. This work provides important insight into the design of efficient photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.