Abstract
We simulate the possible emission from a disk perturbed by a recoiling super-massive black hole. To this end, we study radiation transfer from the system incorporating bremsstrahlung emission from a Maxwellian plasma and absorption given by Kramer's opacity law modified to incorporate blackbody effects. We employ this model in the radiation transfer integration to compute the luminosity at several frequencies, and compare with previous bremsstrahlung luminosity estimations from a transparent limit (in which the emissivity is integrated over the computational domain and over all frequencies) and with a simple thermal emission model. We find close agreement between the radiation transfer results and the estimated bremsstrahlung luminosity from previous work for electromagnetic signals above $10^{14}$ Hz. For lower frequencies, we find a self-eclipsing behavior in the disk, resulting in a strong intensity variability connected to the orbital period of the disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.