Abstract
Eukaryotic genomes are replicated from many origin sites that are licensed by the loading of the replicative DNA helicase, Mcm2-7. How eukaryotic origin positions are specified remains elusive. Here we show that, contrary to the bacterial paradigm, eukaryotic replication origins are not irrevocably defined by selection of the helicase loading site, but can shift in position after helicase loading. Using purified proteins we show that DNA translocases, including RNA polymerase, can push budding yeast Mcm2-7 double hexamers along DNA. Displaced Mcm2-7 double hexamers support DNA replication initiation distal to the loading site in vitro. Similarly, in yeast cells that are defective for transcription termination, collisions with RNA polymerase induce a redistribution of Mcm2-7 complexes along the chromosomes, resulting in a corresponding shift in DNA replication initiation sites. These results reveal a eukaryotic origin specification mechanism that departs from the classical replicon model, helping eukaryotic cells to negotiate transcription-replication conflict.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.