Abstract

Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid–base titration and the values for ETFE membranes were achieved higher than Nafion ® films. Preliminary single cell performance was made using pure H 2 and O 2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion ® membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.