Abstract

ObjectiveA class of ultra-rapid-cure resin-based composites (RBCs) exhibited immediate post-irradiation surface viscoelastic integrity using an indentation-creep/recovery procedure. The aim of this study was to determine whether such behavior is more generally characteristic of a wider range of RBCs. MethodsEight representative RBCs were selected based on different clinical categories: three bulkfills (OBF, Filtek One Bulk Fill; VBF, Venus Bulkfill; EBF, Estelite Bulkfill), three conventional non-flowables (XTE, Filtek Supreme XTE; GSO, GrandioSo; HRZ, Harmonize) and conventional flowables (XTF, Filtek Supreme XTE Flow; GSF, GrandioSo Flow). Stainless steel split molds were used to fabricate cylindrical specimens (4mm (dia)×4mm). These were irradiated (1.2W/cm2) for 20s on the top surface. Post-irradiation specimens (n=3), within their molds, were centrally loaded with a flat-ended 1.5mm diameter indenter under 14MPa stress: either immediately (<2min) or after 24h delayed indentation. Stress was maintained for 2h, then – after removal – recovery measurements continued for a further 2h. Indentation depth (%) versus time was measured continuously to an accuracy of <0.1μm. Data were analyzed by One-way ANOVA and Tukey post-hoc tests (α=0.05). ResultsTime-dependent viscoelastic indentation was observed for all RBCs. For immediate indentation, the maximum indentation range was 1.43–4.92%, versus 0.70–2.22% for 24h delayed indentation. Following 2h recovery, the residual indentation range was 0.86–3.58% after immediate indentation, reducing to 0.22–1.27% for delayed indentation. The greatest immediate indentation was shown by VBF followed by XTF and GSF. OBF, HRZ, XTE and GSO had significantly lower indentations (greater hardness). XTE showed a significantly reduced indentation maximum compared to OBF (p<0.05). Indentations delayed until 24h post-irradiation were reduced (p<0.05) for most materials. SignificanceThe indentation-creep methodology effectively characterized resin-based composites within several categories. Viscoelastic properties evaluated by the indentation-creep method confirmed that highly filled RBCs were more resistant to indentation. Indentations were reduced after 24h post-irradiation due to further matrix-network development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.