Abstract

The radiation-induced oxidative degradation of polyethylenes (PEs) with different degrees of crystallinity was characterized after electron-beam irradiation and during storage at room temperature.UHMWPE, HDPE, LDPE, LLDPE and an ethylene–octene copolymer (Engage) were e-beam irradiated to 30 or 60 kGy in vacuum or in air and stored at room temperature in air. EPR spectroscopy was used to investigate macro-radicals produced during irradiation and their post-irradiation changes. FTIR spectroscopy was used to monitor changes in the polymer structure, induced by irradiation, and to follow post-irradiation oxidation.We found that the crystallinity and the size of the crystalline lamellae, in particular, play a major role on the post-irradiation effects. The low-crystallinity polyethylenes showed no oxidation or oxidation only to a small extent, even when irradiated and stored in air. On the contrary, development of post-irradiation oxidation was observed in HDPE and UHMWPE. We attribute these results to a different reactivity of the macro-alkyl radicals formed upon irradiation in the amorphous or in the crystalline phase. While the radicals formed in the amorphous phase decay in short time, the migration time of the radicals trapped in the crystalline phase to the amorphous one is a key factor, governing the oxidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call