Abstract

Background There is an urgent need of vascular substitutes (VS) to be used in lower limb revascularization procedures when autologous veins are not available and synthetic prosthesis are contraindicated. Since the mechanical differences with respect to native vessels are determinants of the VS failure, the substitutes should have mechanical properties similar to those of the recipient vessels. The use of cryopreserved arteries (cryografts) could overcome limitations of available VS. These work aims were to characterize (a) native vessels/implanted cryografts mechanical and geometrical coupling, (b) cryografts capability to ensure mismatch levels lesser than those expected for expanded polytetrafluoroethylene (ePTFE), (c) cryografts functional properties considering their histological and ultra-structural characteristics. Methods Instantaneous pressure (mechano-transducers) and diameter (B-mode echography) were obtained in implanted femoro-popliteal, ileo-femoro-popliteal and axilo-humeral cryografts ( n = 8), in femoral arteries from recipients ( n = 8), recipient-like ( n = 15) and multiorgan donors-like ( n = 15) subjects, and in ePTFE segments ( n = 10). Calculus: (a) Mechanical parameters: elastic modulus, arterial compliance, distensibility and characteristic impedance; (b) Arterial remodeling: diameter, wall thickness, cross-sectional area and wall-to-lumen ratio; (c) Native vessels/VS coupling. Histological and structural analysis were done in explanted femoro-popliteal and axilo-humeral cryografts ( n = 7). Results Post-implant the cryografts remodeled. Their stiffness increased and the conduit function diminished. Remodeling resulted in an improvement in native vessels/cryograft coupling, which was always better than native vessels/ePTFE coupling. Conclusions Post-implant cryograft remodeling improved native vessels/cryografts coupling. Cryografts would have mechanical and geometrical advantages over ePTFE. Anastomotic cryograft remodeling differed from that expected only due to haemodynamic factors. The structural properties of the remodeled cryografts contribute to explain their functional characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.