Abstract

The study described in this report uses the split Hopkinson pressure bar (SHPB) apparatus to induce damage in a polymer matrix composite by low-velocity, transverse impact. The configuration used a three-point bend fixture in the SHPB for controlled loading and real-time diagnosis. The material analysed was a glass-fibre reinforced bismaleimide matrix composite designated S2 glass/5250-4. Experiments were conducted to characterise the response of the composite by relating a range of impact energies to the post-impact tensile strength following salt-water aging. Results showed that following salt-water aging, a monotonic relation exists between the amount of impact energy absorbed by the specimens and both the post-impact tensile strength and the moisture absorbed by the specimens. In the S2 glass/5250-4 system examined, the effects of exposure to 5000 hours of saltwater following impact were minor, illustrating the insignificance of this type of environmental effect on the post-impact tensile strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.