Abstract
Linear machine learning models “learn” a data transformation by being exposed to examples of input with the desired output, forming the basis for a variety of powerful techniques for analyzing neuroimaging data. However, their ability to learn the desired transformation is limited by the quality and size of the example dataset, which in neuroimaging studies is often notoriously noisy and small. In these cases, it is desirable to fine-tune the learned linear model using domain information beyond the example dataset. To this end, we present a framework that decomposes the weight matrix of a fitted linear model into three subcomponents: the data covariance, the identified signal of interest, and a normalizer. Inspecting these subcomponents in isolation provides an intuitive way to inspect the inner workings of the model and assess its strengths and weaknesses. Furthermore, the three subcomponents may be altered, which provides a straightforward way to inject prior information and impose additional constraints. We refer to this process as “post-hoc modification” of a model and demonstrate how it can be used to achieve precise control over which aspects of the model are fitted to the data through machine learning and which are determined through domain information. As an example use case, we decode the associative strength between words from electroencephalography (EEG) reading data. Our results show how the decoding accuracy of two example linear models (ridge regression and logistic regression) can be boosted by incorporating information about the spatio-temporal nature of the data, domain information about the N400 evoked potential and data from other participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.