Abstract

Heroin is an illicit opioid drug which is commonly abused and leads to dependence and addiction. Heroin is considered a pro-drug and is rapidly converted to its major active metabolite 6-monoacetylmorphine (6-MAM) which mediates euphoria and reward through the stimulation of opioid receptors in the brain. The aim of this study was to investigate the distribution and localization of 6-MAM in the healthy Sprague Dawley rat brain following intraperitoneal (i.p) administration of heroin (10mg/kg), using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), in combination with quantification via liquid chromatography mass spectrometry (LC-MS/MS). These findings revealed that 6-MAM is present both in plasma and brain tissue with a Tmax of 5min (2.8µg/mL) and 15min (1.1µg/mL), respectively. MSI analysis of the brain showed high intensities of 6-MAM in the thalamus-hypothalamus and mesocorticolimbic system including areas of the cortex, caudate putamen, and ventral pallidum regions. This finding correlates with the distribution of opioid receptors in the brain, according to literature. In addition, we report a time-dependent distribution in the levels of 6-MAM, from 1min with the highest intensity of the drug observed at 15min, with sparse distribution at 45min before decreasing at 60min. This is the first study to use MSI as a brain imaging technique to detect a morphine's distribution over time in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call