Abstract

In zebra finches, the vocal organ (syrinx) is larger in males than in females. Specific details about the mechanisms responsible for this dimorphism are not known, but may involve sex differences in steroid hormone action early in post-hatching development. The distribution of androgen receptor (AR), aromatase (AROM), estrogen receptor alpha (ERalpha), and estrogen receptor beta (ERbeta) mRNAs was examined at post-hatching days 3, 10 and 17. A low level of AR was equivalently expressed in the syrinx muscles of both sexes at all three ages. We detected no specific expression of AROM or ERalpha mRNAs. In contrast, ERbeta mRNA was detected in chondrocytes of the forming bone. The density of this expression increased with age as the chondrocytes hypertrophied, but did not differ between the sexes. Taken together, these data suggest that estrogens may act on cartilage/bone, and androgens may act on muscle fibers in early post-hatching development to influence syrinx morphology. However, the lack of a sex difference in steroid receptor mRNA expression in the syrinx suggests that, similar to the forebrain regions that control song, the interaction of androgens and estrogens with their receptors is not sufficient to induce full sexual differentiation of this organ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call