Abstract

Sagebrush steppe ecosystems are threatened by human land-use legacies, biological invasions, and altered fire and climate dynamics. Steppe protected areas are therefore of heightened conservation importance but are few and vulnerable to the same impacts broadly affecting sagebrush steppe. To address this problem, sagebrush steppe conservation science is increasingly emphasizing a focus on resilience to fire and resistance to non-native annual grass invasion as a decision framework. It is well-established that the positive feedback loop between fire and annual grass invasion is the driving process of most contemporary steppe degradation. We use a newly developed ordinal zero-augmented beta regression model fit to large-sample vegetation monitoring data from John Day Fossil Beds National Monument, USA, spanning 7 years to evaluate fire responses of two native perennial foundation bunchgrasses and two non-native invasive annual grasses in a repeatedly burned, historically grazed, and inherently low-resilient protected area. We structured our model hierarchically to support inferences about variation among ecological site types and over time after also accounting for growing-season water deficit, fine-scale topographic variation, and burn severity. We use a state-and-transition conceptual diagram and abundances of plants listed in ecological site reference conditions to formalize our hypothesis of fire-accelerated transition to ecologically novel annual grassland. Notably, big sagebrush (Artemisia tridentata) and other woody species were entirely removed by fire. The two perennial grasses, bluebunch wheatgrass (Pseudoroegneria spicata) and Thurber's needlegrass (Achnatherum thurberianum) exhibited fire resiliency, with no apparent trend after fire. The two annual grasses, cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), increased in response to burn severity, most notably medusahead. Surprisingly, we found no variation in grass cover among ecological sites, suggesting fire-driven homogenization as shrubs were removed and annual grasses became dominant. We found contrasting responses among all four grass species along gradients of topography and water deficit, informative to protected-area conservation strategies. The fine-grained influence of topography was particularly important to variation in cover among species and provides a foothold for conservation in low-resilient, aridic steppe. Broadly, our study demonstrates how to operationalize resilience and resistance concepts for protected areas by integrating empirical data with conceptual and statistical models.

Highlights

  • Sagebrush steppe ecosystems across western North America have been lost or degraded by cumulative impacts of human landuse legacies, biological invasions, and altered fire and climate dynamics (Davies et al, 2011)

  • In 2011, we estimated that frequency of occurrence of big sagebrush was only 6% (12 out of 215 quadrats; Supplementary Figure 1.9). This declined to 0% in 2012 after the 2011 fire and remained so through the duration of the study except that big sagebrush was encountered in 1 quadrat in 2014 (Supplementary Figure 1.9)

  • We used empirical observations and statistical models of native perennial and non-native invasive annual grass cover to evaluate the hypothesis of unidirectional fire driven state-transition to ecologically novel annual grassland in a historically grazed, repeatedly burned, and inherently low resilience/low resistance sagebrush steppe protected area

Read more

Summary

Introduction

Sagebrush steppe ecosystems across western North America have been lost or degraded by cumulative impacts of human landuse legacies, biological invasions, and altered fire and climate dynamics (Davies et al, 2011). Low-elevation, low-productivity sites exhibit higher inertia and are much more difficult and expensive to restore (Suding et al, 2004; James et al, 2013), and when considered from a regional strategic perspective, high-elevation sites may be considered as being of higher conservation priority (Chambers and Wisdom, 2009; Chambers et al, 2019) This confronts those low-elevation protected-areas that exhibit inherently low resilience to fire and resistance to invasion with an existential challenge requiring pro-active strategic landscape prioritization and triage. To fail to do so will likely result in the loss of low-elevation steppe protected areas as places of conservation value given current trajectories of degradation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call