Abstract

Experimental and numerical studies into the structural behaviour of reinforced concrete columns confined by circular steel tubes after exposure to standard fire conditions are presented. These elements differ from conventional concrete-filled steel tubular (CFST) columns in that breaks in continuity are present at the member ends, which limit the longitudinal stresses in the steel and maximise the level of confinement afforded to the concrete through the generation of hoop stresses in the tube. The temperature distributions in the specimens were measured during the heating and cooling phases, while the loadā€“displacement relationships and longitudinal and transverse strains in the steel tube were recorded during the subsequent compressive tests. 3D finite element (FE) models were also developed using the program ABAQUS to investigate the post-fire performance of circular steel tube confined reinforced concrete (CSTCRC) columns, including both heat transfer and stress analyses. The FE models were used to identify the influences of key parameters on the residual capacity of CSTCRC columns, following exposure to the ISO-834 standard fire. The considered parameters included heating time, cross-sectional dimensions, strength of the materials, steel tube to concrete area ratio and ratio of reinforcement. Finally, a design method was proposed for predicting the residual load bearing capacity and compressive stiffness of CSTCRC columns after standard fire exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.