Abstract
Experimental plantings were installed at five sites in three locations in western Minnesota. Aboveground biomass production increased 43–82% as a result of three annual applications of urea or balanced nutrient blend fertilizer beginning near canopy closure. There were no production differences between the type of fertilizer used, indicating that N was the major limiting nutrient. Responses were consistent from site to site, indicating that hybrid poplar stands in this region at this stage of development would be very responsive to fertilization. Leaf tissue N, P, and K concentrations increased in response to both fertilizer treatments; P and K increased more frequently in response to the blend treatment compared to the N-only urea treatment. The diagnosis and recommendation integrated system (DRIS) indices indicated that the stands were near optimal nutritional balance prior to fertilization. Treatments increased individual leaf area and leaf litter production up to 33% and 37%, respectively. Canopy leaf area, leaf N concentration and the sum of DRIS indices were correlated with aboveground production. Growth efficiency, the ratio of production to canopy leaf area, increased with both fertilizer treatment and successive years of treatment, indicating improved stand vigor due to nutrient amendments. Stand production increased more in response to changes in leaf N concentration as stands aged. Plantation production continued to increase with increased internal N concentration even when deficiency levels or levels defined as sufficient for fast growth were exceeded. The correlation between aboveground production and the sum of DRIS indices shows that optimal nutrition at canopy closure may result in current aboveground dry matter production exceeding 13 Mg ha � 1 yr � 1 . Multiple small-dose amendments appear to be effective in increasing production by
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.