Abstract
Timely detection of building damage after a disaster can provide support and help in saving lives and reducing losses. The emergence of transfer learning can solve the problem of difficulty in obtaining several labeled samples to train deep models. However, some degree of differences exists among different scenarios, which may affect the transfer performance. Furthermore, in reality, data can be collected from multiple historical scenarios but cannot be directly combined using single-source domain adaptation methods. Therefore, this study proposes a multi-source variational domain adaptation (MVDA) method to complete the task of post-disaster building assessment. The MVDA method consists of two stages: first, the distributions of each pair of source and target domains in specific feature spaces are aligned separately; second, the outputs of the pre-trained classifiers are aligned using domain-specific decision boundaries. This method maximizes the relevant information in the historical scene, solves the problem of inconsistent image classification in the current scene, and improves the migration efficiency from the history to the current disaster scene. The proposed approach is validated by two challenging multi-source transfer tasks using the post-disaster hurricane datasets. The average accuracy rate of 83.3% for the two tasks is achieved, obtaining an improvement of 0.9% compared with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.