Abstract
Accurate knowledge of post-detonation fireball temperatures is important for understanding device performance and for validation of numerical models. Such measurements are difficult to make even under controlled laboratory conditions. In this work temperature measurements were performed in the fireball of a commercial detonator (RP-80, Teledyne RISI). The explosion and fragments were contained in a plastic enclosure with glass windows for optical access. A hybrid femtosecond-picosecond (fs-ps) rotational coherent anti-Stokes Raman scattering (CARS) instrument was used to perform gas-phase thermometry along a one-dimensional measurement volume in a single laser shot. The 13-mm-thick windows on the explosive-containment housing introduced significant nonlinear chirp on the fs lasers pulses, which reduced the Raman excitation bandwidth and did not allow for efficient excitation of high-J Raman transitions populated at flame temperatures. To overcome this, distinct pump and Stokes pulses were used in conjunction with spectral focusing, achieved by varying the relative timing between the pump and Stokes pulses to preferentially excite Raman transitions relevant to flame thermometry. Light scattering from particulate matter and solid fragments was a significant challenge and was mitigated using a new polarization scheme to isolate the CARS signal. Fireball temperatures were measured 35–40 mm above the detonator, 12–25 mm radially outward from the detonator centerline, and at 18 and 28 µs after initiation. At these locations and times, significant mixing between the detonation products and ambient air had occurred thus increasing the nitrogen-based CARS thermometry signal. Initial measurements show a distribution of fireball temperatures in the range 300–2000 K with higher temperatures occurring 28 µs after detonation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.