Abstract

We discuss the formation and post-deposition instability of nanodrop-like structures in thin films of PDIF-CN2 (a perylene derivative) deposited via supersonic molecular beam deposition technique on highly hydrophobic substrates at room temperature. The role of the deposition rate on the characteristic lengths of the organic nanodrops has been investigated by a systematic analysis of atomic force microscope images of the thin films and through the use of the height-height correlation function. The nanodrops appear to be a metastable configuration for the freshly-deposited films. For this reason, post-deposition wetting effect has been examined with unprecedented accuracy throughout a year of experimental observations. The observed time scales, from few hours to months, are related to the growth rate, and characterize the thin films morphological reordering from three-dimensional nanodrops to a well-connected terraced film. While the interplay between adhesion and cohesion energies favors the formation of 3D-mounted structures during the growth, wetting phenomenon following the switching off of the molecular flux is found to be driven by an instability. A slow rate downhill process survives at the molecular flux shutdown and it is accompanied and maybe favored by the formation of a precursor layer composed of more lying molecules. These results are supported by simulations based on a non-linear stochastic model. The instability has been simulated, for both the growth and the post-growth evolution. To better reproduce the experimental data it is needed to introduce a surface equalizer term characterized by a relaxation time taking into account the presence of a local mechanism of molecular correlation.

Highlights

  • In the past decades, a lot of studies have focused on the stability and self-organization of coated surfaces

  • We have already discussed in ref.[33] the fabrication of PDIF-CN2 n-type organic thin-film transistors (OTFTs) by supersonic molecular beam deposition (SuMBD), where high mobility devices were obtained keeping the substrate at room temperature during the organic film growth

  • In order to understand the mechanism inducing this critical wetting effect, we report an accurate study of the anomalous growth and relaxation effect of PDIF-CN2 thin films deposited by SuMBD

Read more

Summary

Introduction

A lot of studies have focused on the stability and self-organization of coated surfaces. In the framework of vapor-deposited thin-films, for metals and inorganic semiconductors, the knowledge of the kinetic growth mechanism by vapor condensation is well assessed since the mass transport between layers is primarily ascribed to the Ehrlich-Schwöbel (ES) energy barrier. This approach gives an accurate control of the film properties and the instabilities are mainly due to the relaxation of strain elastic energy in hetero-epitaxial www.nature.com/scientificreports/. This is similar to what happens in the case of increased molecular diffusivity[38], but without increasing the substrate temperature

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call