Abstract

Triterpenoids possess potent biological activities, but their polycyclic skeletons are challenging to synthesize. The skeletal diversity of triterpenoids in plants is generated by oxidosqualene cyclases based on epoxide-triggered cationic rearrangement cascades. Normally, triterpenoid skeletons then remain unaltered during subsequent tailoring steps. In contrast, the highly modified triterpenoids found in Sapindales plants imply the existence of post-cyclization skeletal rearrangement enzymes that have not yet been found. We report here a biosynthetic pathway in Sapindales plants for the modification of already cyclized tirucallane triterpenoids, controlling the pathway bifurcation between different plant triterpenoid classes. Using a combination of bioinformatics, heterologous expression in plants and chemical analyses, we identified a cytochrome P450 monooxygenase and two isomerases which harness the epoxidation-rearrangement biosynthetic logic of triterpene cyclizations for modifying the tirucallane scaffold. The two isomerases share the same epoxide substrate made by the cytochrome P450 monooxygenase CYP88A154, but generate two different rearrangement products, one containing a cyclopropane ring. Our findings reveal a process for skeletal rearrangements of triterpenoids in nature that expands their scaffold diversity after the initial cyclization. In addition, the enzymes described here are crucial for the biotechnological production of limonoid, quassinoid, apoprotolimonoid, and glabretane triterpenoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call