Abstract

Epoxy resin as a thermoset polymer is vulnerable to creep loading even at room temperature due to its viscoelastic nature. This study investigated the effect of reinforcing epoxy resin with different functionalized multi-walled carbon nanotubes (MWCNT) contents on the creep response and post-creep residual tensile properties of nanocomposites. The creep tests were performed on the nanocomposite specimens containing different filler contents and the neat epoxy specimen at 40°C under a constant load level of 200 N. It was found that the nanocomposites containing 0.3 wt% MWCNTs experienced 29.6%, 69.1%, and 74.1% decreases in the elastic strain, creep strain, and steady-state creep strain rate, respectively, compared to the neat epoxy. Furthermore, the tensile strength and stiffness of the neat epoxy and nanocomposite specimens were evaluated before and after a partial creep test (at a load level of 200 N for 150 min) by conducting tensile tests. The nanocomposites containing 0.3 wt% MWCNTs demonstrated considerable improvements of 35.9%, 41.2%, 27.9%, and 28.1% in strength, residual strength, stiffness, and residual stiffness, respectively, compared to the neat epoxy. Furthermore, scanning electron microscopy assessment was utilized to investigate the fracture surfaces of the nanocomposite specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call