Abstract

Modern compilers typically optimize for executable size and speed, rarely exploring non-functional properties such as power efficiency. These properties are often hardware-specific, time-intensive to optimize, and may not be amenable to standard dataflow optimizations. We present a general post-compilation approach called Genetic Optimization Algorithm (GOA), which targets measurable non-functional aspects of software execution in programs that compile to x86 assembly. GOA combines insights from profile-guided optimization, superoptimization, evolutionary computation and mutational robustness. GOA searches for program variants that retain required functional behavior while improving non-functional behavior, using characteristic workloads and predictive modeling to guide the search. The resulting optimizations are validated using physical performance measurements and a larger held-out test suite. Our experimental results on PARSEC benchmark programs show average energy reductions of 20%, both for a large AMD system and a small Intel system, while maintaining program functionality on target workloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.